SERIES 1 ROLL-A-DOOR ELEVATION - TYPICAL

SCALE 1:50

NOTE:
- CURTAIN HEIGHT = OPENING HEIGHT
- OPENING WIDTH = CURTAIN WIDTH = CURTAIN OVERLAP
  (REFER SECTION 2 ON DRAWINGS S02 AND S03)

MAXIMUM ULTIMATE DESIGN ABUTMENT CATERNY 
FORCE Fx (PER METRE HEIGHT) FOR VARIOUS SPANS IN
REGION C, TC2 FOR A DESIGN WIND PRESSURE OF 3.26 kPa

NOTE: CURTAIN WIDTH = OPENING WIDTH + CURTAIN OVERLAP

MAXIMUM OUT OF PLANE ULTIMATE DESIGN ABUTMENT FORCE (PER METRE HEIGHT)

Fy = 3/4

W = ULTIMATE DESIGN WIND PRESSURE (kPa)
L = CURTAIN WIDTH (SPAN) (m)

CURTAIN MATERIAL AND 
WINDCLIPS - PART PLAN

SCALE 1:2

- NYLOFELT STRIP ALONG 
  EDGE OF CURTAIN
- WASHER, 2 HOLE #3.3 x 1mm 
  FITTED UNDER TAIL OF RIVET

SECTION

SCALE 1:2

- CURTAIN MATERIAL COLOURCORBON G3005 0.4mm THICK
- WINDLOCK CLIPS FITTED TO OUTSIDE, FOR BLOW-IN SITUATIONS
- WINDLOCK CLIPS FITTED TO INSIDE, FOR BLOW-IN SITUATIONS

NOTES:
- DESIGN CRITERIA
  - REFER ALSO TO NOTES COVERING BASIS OF 
    DRAWINGS & SPECIFICATIONS
  - REGIONAL
  - TERRAIN CATEGORY 2
  - DOOR HEIGHT 5.8m
  - BUILDING IMPORTANCE LEVEL 7
  - REGIONAL WIND SPEED 63.9 m/s
  - DOORS ARE RATED UP TO AN ULTIMATE DESIGN WIND 
    PRESSURE OF 3.26 kPa FOR A MAXIMUM ALLOWABLE CURTAIN 
    WIDTH OF 3.5m

LIMITATIONS
- REFER ALSO TO NOTES COVERING BASIS OF DRAWINGS AND 
  DESIGN CRITERIA
- STEEL CATEGORY 2, TO BE 3.0 mm IN THICKNESS 
  WITH MINIMUM STRESS GRADE OF 50 S K N
- STRENGTH AND ALLOYS CONFORM TO DRAFT 
  DRAW SPECIALISTS OF HERMIONE
- CABLE PINING OR BLOCKING, IF ANY;
- THE STRUCTURE TO WHICH THE DOOR IS ATTACHED SHALL 
  BE ASSESSED AND CERTIFIED INDEPENDENTLY AS REQUIRED 
  BY A SUITABLY QUALIFIED ENGINEER
- ALTERNATIVE DESIGN PARAMETERS TO WHAT ARE 
  SPECIFIED ON THESE DRAWINGS ALONG WITH ALTERNATIVE 
  SITE SPECIFIC LOCAL PRESSURE FACTORS MAY BE 
  ADAPTED PROVIDED THE CALCULATED ULTIMATE DESIGN 
  WIND PRESSURES DO NOT EXCEED 3.26 kPa
- THE DESIGN ENGINEER IS TO ENSURE THAT THE SITE 
  SPECIFIC WIND LOADINGS DO NOT EXCEED THE 
  ULTIMATE DESIGN WIND PRESSURE RATING OF 3.26 kPa
- DOORS MAY BE POSITIONED AT ANY LOCATION ALONG 
  THE BUILDING ENVELOPE INCLUDING ALL LOCAL PRESSURE 
  ZONES; IN COHESIONS OF BUILDINGS, PROVIDING THE 
  CALCULATED ULTIMATE DESIGN WIND PRESSURES DO NOT EXCEED 3.26 kPa

NOTES COVERING BASIS OF DRAWINGS
- TEST REPORT No. QT155337-1 CYCLE testing 
  STATED SEISMIC ENGINERING AND PHYSICAL DESIGN 
  JAMES CROSS UNIVERSITY
- PRINCIPLES OF ROOFINGS
- AS/NZS 1170.2:2007 STRUCTURAL DESIGN ACTIONS PART 2 
  WIND ACTING
- AS/NZS 1170.2:2007 STRUCTURAL DESIGN ACTIONS PART 3 
  GENERAL PRINCIPLES
- AS/NZS 1559.5.2:2006 GARAGE DOORS AND OTHER LARGE 
  ACCESS DOORS
- AS/NZS 1559.2:2006 STEEL STRUCTURES
- AS/NZS 1559.3:2004 TRUSS STRUCTURES
- AS/NZS 1559.3:2003 TRUSS STRUCTURES ACTIONS PART 1 
  PERMANENT, IMPROVED AND OTHER ACTIONS
- AS/NZS 4600.5.2:2018 WIND LOAD ENVIRONMENTAL 
  PARTICULARS PART 3
- LIMIT STATE DESIGN
- AS 1170:2017 STRUCTURAL DESIGN ENVELOPES
- THE SERIES ROLL-A-DOORS INCLUDE THE FOLLOWING REVERSE 
  PRODUCTION PRODUCT NAMES:
  a) GOLDLINE DELUXE ROLL-A-DOOR MODEL RP
  b) ROLLMATE MODEL RP
  c) ROLLMATE MODEL RP
  d) ROLL-A-DOOR PLUSもりるA DEOREE MODEL RP
  e) ROLL-A-DOOR PLUSもりるA DEOREE MODEL RP
  ALL DOOR COMPONENTS TO BE IN ACCORDANCE WITH 
  STANDARDISED SERIES ROLL-A-DOOR MANUFACTURING 
  SPECIFICATIONS TO BE IN ACCORDANCE WITH STANDARDISED 
  SERIES ROLL-A-DOOR INSTALLATION GUIDELINES.

B&D AUSTRALIA PTY LTD

B&D SERIES 1 ROLL-A-DOOR (WINDLOCKED) 
FOR USE IN WIND REGION C, TC2
REINFORCED CONCRETE CORE FILLED MASONRY ABUTMENT TO BE DESIGNED BY OTHERS.

NOTE:
- THE ABOVE FIXING DETAIL HAS BEEN BASED ON A MAXIMUM DESIGN SPAN (L) OF 3150mm.
- FIXINGS INTO REINFORCED CONCRETE CORE FILLED BLOCK WALL ABUTMENTS HAVE BEEN DESIGNED USING THE RAMSET-SPECIFIERS RESOURCE BOOK.
- THE FOLLOWING CODES OF PRACTICE WERE ALSO CONSIDERED IN THE DESIGN OF THE ABOVE FIXING DETAIL:
  - AS/NZS 1664.1:1997 ALUMINIUM STRUCTURES PART 1: LIMIT STATE DESIGN.
  - AS 3700-2001 MASONRY STRUCTURES

- STEEL FRAME (SHS) OR SIMILAR TO BE DESIGNED BY OTHERS. MINIMUM THICKNESS TO BE 2.4mm. ALL STEEL SURFACES IN CONTACT WITH THE ALUMINIUM GUIDE ARE TO BE APPROPRIATELY PAINTED TO AVOID THE ONSET OF CORROSION (SPECIFICATION BY OTHERS).

NOTE:
- THE ABOVE FIXING DETAIL HAS BEEN BASED ON A MAXIMUM DESIGN SPAN (L) OF 3150mm.
- FIXINGS INTO STRUCTURAL STEEL ABUTMENTS HAVE BEEN DESIGNED USING TECHNICAL DATA PROVIDED BY BUILDEX FASTENERS.
- STAINLESS STEEL TEK SCREWS IN LIEU OF CLIMASEAL® 4 COATED TEK SCREWS ARE TO BE USED IN HIGHLY CORROSIVE ENVIRONMENTS.
- THE FOLLOWING CODES OF PRACTICE WERE ALSO CONSIDERED IN THE DESIGN OF THE ABOVE FIXING DETAIL:
  - AS 4100-1998 STEEL STRUCTURES.
  - AS/NZS 4408:2005 COLD-FORMED STEEL STRUCTURES.
  - AS/NZS 1664.1:1997 ALUMINIUM STRUCTURES PART 1: LIMIT STATE DESIGN.
SECTION 2 PLAN

Guide supported by solid clay masonry walls for a maximum door span (L) of 3150mm. For use in wind regions A and B, TC2 and up to a maximum design wind pressure as nominated in Table A.

TABLE A

<table>
<thead>
<tr>
<th>WIND REGION</th>
<th>TERRAIN CATEGORY</th>
<th>MAXIMUM DESIGN WIND PRESSURE (kPa)</th>
<th>SPACING (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>TC2</td>
<td>1.11 kPa</td>
<td>255 @ EVERY 3rd BRICK COURSE</td>
</tr>
<tr>
<td>B</td>
<td>TC2</td>
<td>1.77 kPa</td>
<td>17 @ EVERY 2nd BRICK COURSE</td>
</tr>
</tbody>
</table>

NOTE:
- The above fixing detail has been based on a maximum design span (L) of 3150mm.
- The above fixing detail applies to the use of solid clay masonry units for the construction of the abutments.
- Fixings into solid clay masonry abutments have been designed using the Ramset Specifiers Resource Book.
- The following codes of practice were also considered in the design of the above fixing detail.


SECTION 2 PLAN

Guide supported by timber framed walls for a maximum door span (L) of 3150mm in regions A, B and C, TC2 and up to a maximum design wind pressure as nominated in Table B.

TABLE B

<table>
<thead>
<tr>
<th>WIND REGION</th>
<th>TERRAIN CATEGORY</th>
<th>MAXIMUM DESIGN WIND PRESSURE (kPa)</th>
<th>SPACING (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>TC2</td>
<td>1.11 kPa</td>
<td>35 @ 155</td>
</tr>
<tr>
<td>B</td>
<td>TC2</td>
<td>1.77 kPa</td>
<td>146 @ 99</td>
</tr>
<tr>
<td>C</td>
<td>TC2</td>
<td>3.26 kPa</td>
<td>99 @ 55</td>
</tr>
</tbody>
</table>

NOTE:
- The above fixing detail has been based on a maximum design span (L) of 3150mm.
- Fixings into timber framed abutments have been designed using technical data provided by Buildex Fasteners.
- Stainless steel Tek screws in lieu of Climaseal® 4 coated Tek screws are to be used in highly corrosive environments.
- The following codes of practice were also considered in the design of the above fixing detail.

COLD FORMED STEEL FRAME POST TO BE DESIGNED BY OTHERS. POST THICKNESS AND GRADE IS AS SPECIFIED IN TABLE C. ALL STEEL SURFACES IN CONTACT WITH THE ALUMINIUM GUIDE ARE TO BE APPROPRIATELY PAINTED TO AVOID THE ONSET OF CORROSION (SPECIFICATION BY OTHERS).

SECTION PLAN

GUIDE SUPPORTED BY COLD FORMED STEEL FRAME FOR A MAXIMUM DOOR SPAN (L) OF 3150mm IN REGION C TC2 AND UP TO A MAXIMUM DESIGN WIND PRESSURE OF 3.26 kPa.

NOTE:
- THE ABOVE FIXING DETAIL HAS BEEN BASED ON A MAXIMUM DESIGN SPAN OF 3150mm.
- FIXINGS INTO COLD FORMED STEEL ABUTMENTS HAVE BEEN DESIGNED USING TECHNICAL DATA PROVIDED BY BULDEX FASTENERS.
- STAINLESS STEEL TEK SCREWS IN LEU OF CLIMASEAL®-4 COATED TEK SCREWS ARE TO BE USED IN HIGHLY CORROSIVE ENVIRONMENTS.
- THE FOLLOWING CODES OF PRACTICE WERE ALSO CONSIDERED IN THE DESIGN OF THE ABOVE FIXING DETAIL:
  - AS/NZS 4600:2005 COLD FORMED STEEL STRUCTURES
  - AS/NZS 1664.1:1997 ALUMINIUM STRUCTURES PART 1: LIMIT STATE DESIGN.